
libnix

libnix ii

COLLABORATORS

TITLE :

libnix

ACTION NAME DATE SIGNATURE

WRITTEN BY April 16, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

libnix iii

Contents

1 libnix 1

1.1 libnix.guide . 1

1.2 libnix.guide/Description . 2

1.3 libnix.guide/Authors . 2

1.4 libnix.guide/Disclaimer . 3

1.5 libnix.guide/Naming . 3

1.6 libnix.guide/Usage . 3

1.7 libnix.guide/Features . 4

1.8 libnix.guide/Startup codes . 5

1.9 libnix.guide/Startup interface . 6

1.10 libnix.guide/Startup usage . 7

1.11 libnix.guide/Commandline parser . 8

1.12 libnix.guide/libnix.a . 9

1.13 libnix.guide/Locale . 9

1.14 libnix.guide/Formatted I-O . 10

1.15 libnix.guide/atof strtod . 11

1.16 libnix.guide/Memory management . 11

1.17 libnix.guide/Standard I-O . 11

1.18 libnix.guide/Signal handling . 12

1.19 libnix.guide/setjmp longjmp . 13

1.20 libnix.guide/ctype . 13

1.21 libnix.guide/clock . 13

1.22 libnix.guide/Multibyte character functions . 14

1.23 libnix.guide/libstubs.a . 14

1.24 libnix.guide/Auto-library-opening usage . 14

1.25 libnix.guide/Auto-library-opening interface . 15

1.26 libnix.guide/detach.o . 16

1.27 libnix.guide/stackhandling . 17

1.28 libnix.guide/swapstack . 17

1.29 libnix.guide/stackextend implementation . 18

libnix iv

1.30 libnix.guide/stackextend usage . 19

1.31 libnix.guide/Advanced . 19

1.32 libnix.guide/Costs . 20

1.33 libnix.guide/Special startups . 20

1.34 libnix.guide/Calling convention . 21

1.35 libnix.guide/libinit.o . 22

1.36 libnix.guide/libinitr.o . 22

1.37 libnix.guide/devinit.o . 22

1.38 libnix.guide/Set elements . 23

1.39 libnix.guide/geta4 . 23

1.40 libnix.guide/Data models . 24

1.41 libnix.guide/Code models . 26

1.42 libnix.guide/Library bases . 27

1.43 libnix.guide/libamiga.a . 27

1.44 libnix.guide/FAQs . 28

libnix 1 / 29

Chapter 1

libnix

1.1 libnix.guide

This is the documentation of libnix. The following is a list of
chapters. You need not read all of them - but reading the chapter
Features is recommended.

Description
What is libnix?

Authors
Who did it?

Disclaimer
Copyright and other legal stuff.

Naming
Naming conventions.

Usage
How to use it ;-)

Features
Details of the implementation (and more).

Special startups
How to write shared libraries and devices with gcc.

Set elements
A nice feature of gnu ld.

Library bases
And how they work.

geta4
Some words on code and data models

FAQs
Frequently asked questions and answers.

libnix 2 / 29

1.2 libnix.guide/Description

What is libnix?

libnix is a static (i.e. link) library for usage on amiga computers
together with gcc 2.3.3 or above. It is very amigalike and contains a
lot of features you probably don’t want to miss:

* auto-open-library feature

* SAS compatible handling of WB startup message

* auto-detach startup code

* is very short

* does not require a shared library

* auto stack-extend

* and much more

So if you want to write amiga specific programs or if you only need
ANSI support instead of unix compatibility - and if you don’t want to
redistribute ixemul.library - this can be your choice.

But be aware - libnix requires Amiga OS 2.0 or higher :(.

1.3 libnix.guide/Authors

Authors

If you want to change anything in the library please contact one of
us first - we know how to do it best since we wrote it. If you want to
report bugs please contact us, too. If we don’t know about them we
cannot fix them.

Matthias Fleischer
fleischr@izfm.uni-stuttgart.de

Gunther Nikl
gnikl@informatik.uni-rostock.de

I want to thank especially Gerhard Müller (the author of gerlib) -
we worked hard together to be compatible - just wait for his next
release. And Philippe Brand - the name libnix was his idea.

libnix 3 / 29

1.4 libnix.guide/Disclaimer

Disclaimer

This package is public domain. That means that you can copy, use and
modify it without any problems and that you can get it for free. If you
actually paid for getting it this is completely your fault - I didn’t
see a cent of that money. It also means that I cannot be made
responsible for any damage resulting out of the use of it - you simply
shouldn’t trust anything you didn’t pay for :-).

1.5 libnix.guide/Naming

Naming conventions

This library is not only for the end user but also for the library
programmer (if you want to write your own startup, etc).

If you want to write code for it you should be aware of the normal
naming conventions for ANSI libraries:

* Names with no underscore ‘foo’ are ANSI or POSIX compliant - there
is absolutely no risk in using them. If you use only these you can
write portable programs.

* Names with a single underscore ‘_foo’ are ANSI extensions for the
end user. Usually they are very common on certain systems but not
used on others.

* Names with two underscores ‘__foo’ are for the library programmers
only. If they are not documented you cannot rely on them. And
even if they are you should use them only for writing library code.

There is only one exception of these conventions (‘__chkabort()’)
and this is for compatibility reasons.

1.6 libnix.guide/Usage

Usage

The usage of this library is like any other link library. The only
important thing is the right linkage order:

libnix 4 / 29

1. The startup code has to be used first :-)

2. The stubs-library has to be used last since it contains the
library base pointers.

3. The commandline parser should be used after your code but before
most other things or you will run into problems.

Normally this is handled by the specs file of gcc.

‘gcc (-fbaserel) (-resident) -noixemul YOUR_OBJECTS (-nix_main)
(-lm)’

If you use ‘-lnix_main’ you get a different commandline parser.
‘-lm’ uses the math library.

Be aware that the formatted I/O-functions need the math library to
work correctly for floating point numbers. Without the math library you
get only floating point support for simple operators like ‘+’, ‘*’,
casts and that like.

If you don’t use the assembler inline functions of gcc you will have
to use ‘libamiga.a’ if you want to use any Amiga OS function. gcc
comes with a free version of libamiga.a which is a subset of the
original one. You can build it yourself if you unpack the sources, but
be prepared that it may take some time.

For compiling a4-relative programs you should choose the ‘-fbaserel’
option. You get resident (pure) programs if you set the ‘-resident’
option. Anything else necessary for these options is handled by the
specs-file (choosing the right startups and libraries).

If you (for some reason) don’t trust you specs-file you can call
everything by hand:

‘gcc -nostdlib ncrt0.o YOUR_OBJECTS libnixmain.a (libm.a) libnix.a
libstubs.a’

But that’s not the recommended way. Therefore I don’t explain this in
detail here - use the ‘-v’ option of gcc for more details.

1.7 libnix.guide/Features

Features - what you get

The following list contains the elements of this package in the
right linkage order. This means if you follow the list from top to
bottom and take one file of each menu entry you will get a working
configuration.

Startup codes

libnix 5 / 29

Does all work necessary for startup.
Your objects Need I say anything about that?

Commandline parser
Calculates argc and argv.

libm.a The math library (optional).

libnix.a
The library itself.

libamiga.a
If you have one.

detach.o
Auto detaching

libstubs.a
The library bases.

stackhandling
(part of libnix.a) stack swapping, checking and extension

1.8 libnix.guide/Startup codes

Startup codes

There is a lot of work to do before your ‘main’ function can be
called - open shared libraries, open stdin, stdout, etc. Depending on
the compiler options and the ANSI functions you use. This work is done
by the startup code.

Startup interface

Startup usage
To get a short startup all the necessary modules are optional - ←↩

they
get only linked in if you use them. There are 2 exceptions from this
(since the linker cannot check for it):

* The commandline parser. It can be deactivated by declaring

‘__nocommandline’

somewhere in your program (the type doesn’t matter).

* The shared-library-opening module. You should not disable it unless
you know what you are doing since most library functions depend on
it.

The startup codes itself are written in assembly to be as short as

libnix 6 / 29

possible.

Here is a little program to get the point:

#include <inline/exec.h>
#include <dos/dos.h>
#include <inline/dos.h>
#include <workbench/workbench.h>

int __nocommandline=1; /* Disable commandline parsing */
int __initlibraries=0; /* Disable auto-library-opening */

struct DosLibrary *DOSBase=NULL;

extern struct WBStartup *_WBenchMsg;

int main(void)
{ if(_WBenchMsg==NULL)

{ if((DOSBase=(struct DosLibrary *)OpenLibrary("dos.library",37))!=NULL)
{ Write(Output(),"Hello world\n",12);

CloseLibrary((struct Library *)DOSBase); } }
return 0;

}

compiled and linked with

‘gcc -noixemul -s -O2 -fbaserel helloworld.c’

gives an executable of 492 bytes. And this with the normal ‘main’
function!

So you never need to try to write a program without a startup code.

1.9 libnix.guide/Startup interface

Startup code interface

The startup codes do the following:

* They catch the workbench startup message and place it into the
variable

‘extern struct WBStartup *_WBenchMsg’

you can simply look into this place (and test for a ‘NULL’
pointer) to check if your program was started from WB. If this is
a ‘NULL’ pointer

‘extern char *__commandline’

contains the (‘\n’ terminated) parameters of the commandline.

libnix 7 / 29

* They call all functions in the

‘long __INIT_LIST__[];’

with ascending priority.

* They call the function

‘int main(int argc,char *argv[])’

You can exit by simply falling through the end of ‘main’ or by
calling

‘__volatile void exit(int returncode)’

which does the cleanup:

* It calls all functions in the

‘long __EXIT_LIST__[];’

with descending priority.

* It replys the WB startup message if necessary, resets the
stackpointer and returns to the shell.

‘__INIT_LIST__’ and ‘__EXIT_LIST__’ are two set elements which are a
speciality of the gnu ld. Since everything that needs initialization
works over these two lists the bare startups are very short. In fact
they are even shorter then some low-level-startups

You can easily add your own functions to the startup procedure by
using the macros in the file ‘headers/stabs.h’ - but keep in mind that
this is non-portable. Priority values <=0 are reserved for library
implementors.

1.10 libnix.guide/Startup usage

Startup code usage

There are currently 3 startup codes in this package (maybe there
will be more in the future). Depending on the code and data model you
use and some other things you should choose one of them:

‘ncrt0.o’
This is the normal (i.e. large code, large data model) startup.
It contains a ‘geta4()’ entry point to enable you to use one source
for two code models. There is no other need for this function.

‘nbcrt0.o’
This one is for compiling small data model (a4 relative) programs.
There is a ‘geta4()’ entry that places the right information into
a4. Use this startup code if you compiled with ‘-fbaserel’.

libnix 8 / 29

‘nrcrt0.o’
This startup code allocates a new data area every time you call it.
Even if you don’t call it at all the data are is there once. This
gives you multientrant and reentrant code. Therefore this startup
code is for compiling resident (pure) programs. Resident programs
are always small data model if you let the compiler do the work.

There is no ‘geta4()’ entry - I just don’t know how this could be
done. (If you start your code 10 times and want to access global
data out of a hook you cannot tell which one of the 10 data areas
to use because you want to access the data from a different task!)

1.11 libnix.guide/Commandline parser

Commandline parser

There are currently 2 commandline parser modules in the libnix
package. You can easily write your own by looking into the examples

‘libnixmain.a’
This is the normal one, i.e. it does all the work necessary for
ANSI compatibility and gives you the normal ‘main’ calling
convention. You can shut down the commandline parsing (if you want
to use the amiga OS commandline parser) by declaring

‘__nocommandline’

somewhere in your code (the type of it actually doesn’t matter).
This spares some bytes and is compatible to every other compiler.

And you can declare your own WB shell window by declaring a

‘char __stdiowin[]’

variable somewhere in your code (but only if you parse the
commandline - without the commandline parser you get no window at
all!).

‘libnix_main.a’
This is a special version of a commandline parser - it doesn’t call
the normal ‘main’ but

‘int main(char *commandline)’

‘commandline’ is the complete commandline - including the quoted
filename of your program (it’s only quoted, not escaped - this is
for compatibility reasons :-(). You might think the name of the
game should be ‘_main’ and not ‘main’ - and you are completely
right. You can use ‘_main’ for ‘main’ and ‘_exit’ for ‘exit’ -
there are symbol redirections for these and the linker does the
work.

libnix 9 / 29

This commandline parser is useful for compatibility. You can use
it as a second example or for recompiling PD programs that use the
single argument. You cannot use it for compiling ANSI code.

1.12 libnix.guide/libnix.a

Some ANSI (mis)features

I suppose you are familiar with C and especially ANSI C - if not you
should read a good book about it (1). This chapter only contains some
special features of the implementation - you should know these if you
want to use this library.

Locale

Formatted I-O

atof strtod

Memory management

Standard I-O

Signal handling

setjmp longjmp

ctype

clock

Multibyte character functions
---------- Footnotes ----------

(1) I recommend this one:

Brian W. Kernighan, Dennis M.Ritchie:
The C Programming Language (Second Edition)
Prentice Hall, Englewood Cliffs, 1988

1.13 libnix.guide/Locale

Locale

One feature of a complete ANSI compatible library is locale support.

libnix 10 / 29

The ANSI standard only knows of two locales:

* "C" locale (normal C behaviour).

* Default locale.

Every other locale depends very heavily on the implementation.

To do locale support on the amiga I decided to use locale.library
(what else). This means that you normally have only these two locales
- to have more than that you must make some extra preferences files
with the locale preferences editor and give the path of these to the
setlocale()-call. If you do not have locale.library you will get only
"C" locale. This is the default then :-(.

Another important point is that the ANSI standard requires the
default locale to be loaded at program startup. i.e. if you use german
locale (for example) you will just get it - printf and scanf will not
work as expected but use the decimal comma ‘,’ instead of the decimal
point ‘.’ for their floating point numbers, ctype functions will behave
differently, too.

This can be very annoying if you don’t want to use ANSI locale but
rather locale.library (which is not portable but IMHO much better) or if
you don’t need locale support. And even dangerous if you don’t test
your program under different locales.

To get around this problem I decided to do some nasty thing: To get
locale support you have to make up a reference to setlocale. You can do
this by just calling

setlocale(LC_ALL,"C");

immediately after program startup. (And get "C" locale then after
program start which is a much better choice). Or by just using
setlocale anywhere in your program - you will get default locale at
program startup then.

1.14 libnix.guide/Formatted I-O

Formatted I/O

The formatted I/O specifications are all there (remember: this
library tries to be ANSI compliant). But there are two things you
should know about them:

* The formatted I/O is affected by the setlocale() call - this is no
bug, just an ANSI feature.

* Half of the code of a full blown printf handles floating point
numbers - but not everybody needs them. So there are two functions
for both ‘vfprintf’ and ‘vfscanf’ - one in ‘libnix.a’ not including
floating point support and one in ‘libm.a’ including floating

libnix 11 / 29

point support.

So if you want to use one of the formatted I/O specifiers for
floats you should link with the math library ‘-lm’.

1.15 libnix.guide/atof strtod

atof strtod

The two functions ‘atof’ and ‘strtod’ require a working ‘%f’
specifier in ‘vfscanf’ - therefore they require the formatted I/O
functions in the math library. Since ‘libm.a’ is linked before
‘libnix.a’ these two functions have been gone into the math library.

1.16 libnix.guide/Memory management

Memory management

Most of the memory management of this library runs through malloc().
Only the commandline parser uses AllocVec() - so you can use it without
having the malloc function somewere in your program.

The memory management uses a local (to this task) memory pool to
reduce memory fragmentation. It uses the system functions to do so (not
the new pooled memory functions but just the older Allocate(),
Deallocate() pair which are the <3.0 fallback for libamiga.a’s pooled
memory functions, too) so there should be no problems with it - these
functions are tested very good.

The default blocksize for memory allocations is 16384 bytes -
equivalent to 4 MMU pages. Bigger allocations are blown up to a
multiple of 4096 bytes. So don’t be alarmed if your program uses more
memory then expected.

If you don’t like this value (if you use bigger portions frequently
or only use very little memory) you can replace it by declaring

‘unsigned long _MSTEP’

You should use a multiple of MMU pages. If you don’t use a full MMU
page you gain nothing - malloc rounds up anyway.

1.17 libnix.guide/Standard I-O

libnix 12 / 29

Standard I/O - where stdin, stdout, stderr come from

**

2 of the 3 standard I/O streams are no real problem:

* ‘stdin’ is set to the value the ‘Input()’ function of ‘dos.library’
serves,

* ‘stdout’ is set to the ‘Output()’ value.

Both streams are managed by the OS and the library need not take much
care about them. But ‘stderr’ is a different thing since there is no
‘Errput()’ ;-) function. So ‘stderr’ is handled as follows:

1. If ‘process->pr_CES’ is set, this value is taken. There are not
much shells that set this value so most of the time this leads to
NULL.

2. If this didn’t work and your program was started from CLI the
library opens ‘Open("*",MODE_NEWFILE)’. This opens the last
interactive terminal attached to stdout, i.e. if you use the
normal Amiga shell and redirect your output to a file you get the
terminal, if you redirect your output to ‘NIL:’ you get ‘NIL:’.

3. If this didn’t work too (you never know) or your program was
started from WB you simply get the same stream as in ‘stdout’.

1.18 libnix.guide/Signal handling

Signal handling

There is only support for the two signals SIGABRT and SIGINT. The
library knows of some other signals but cannot generate them. The
support for SIGABRT is simple - but SIGINT is a completely different
thing:

You cannot use exec signal handlers since they are called at any
time - even in the middle of a library call. And if your library just
blocked a private semaphore and you jump out of the library code you
will get a nice deadlock :-(. (And for people who don’t know: signal
handlers are bogus upto OS 2.0 (even there you need a good setpatch)).

So SIGINT (CTRL-C) is just polled at the start of most I/O-functions
by calling the function

‘void __chkabort(void)’

Other signals are even more difficult to implement:

* SIGSEGV simply doesn’t exist - and if it does it’s due to a VM
system and should not be generated.

libnix 13 / 29

* SIGFPE is not generated by the math libraries - so it would be a
bad thing to generate it by the mathematical coprocessor.

* SIGILL should never happen - your program must be faulty if you
get one. Most of the time this happens if you try to run a 68020+
compiled program on a plain 68000.

* SIGTERM couldn’t be disabled - even if it was there ;-).

You can disable CTRL-C handling by replacing ‘__chkabort’ with a
do-nothing stub function - but there is a better way. Just call

‘signal(SIGINT,SIG_IGN)’

Replacing __chkabort is used very often by amiga-programs and if
your application does not need CTRL-C handling at all and is amiga
specific you can use this. The second method is the ANSI standard
method and works on all types of machines.

1.19 libnix.guide/setjmp longjmp

setjmp, longjmp

This library is compatible to the header files that come with gcc -
and the jmp_buf in there is not large enough for the FPU registers. So
they are not restored! The ANSI standard doesn’t even require to
restore any of the other local variables (they are restored :-)), so
this is NO incompatibility to the ANSI standard.

1.20 libnix.guide/ctype

ctype.h functions

If you look into ctype.h you will see that the functions in there are
just macros - and that they are duplicate in the library as functions.
This is NOT a mistake. The ANSI standard requires such macros to be
duplicate as functions.

And remember: These functions are affected by the setlocale() call.

1.21 libnix.guide/clock

The clock function

libnix 14 / 29

The clock() function’s work is to measure processor time for the
specific task - but there is no information like this in the amiga OS
:-(. So it just measures the time from program start on - and is
compatible with this behaviour to all single tasking OSs around.

1.22 libnix.guide/Multibyte character functions

Multibyte character functions

The multibyte character functions are all there - but since the
Amiga OS uses no other character set than ECMA Latin I they simulate
just "C" locale. This means they do nothing useful.

1.23 libnix.guide/libstubs.a

libstubs - automatic library opening

The Amiga OS shared libraries are a nice thing. All the tasks can
use them in parallel, they eat up memory only if you use them and they
are simple to use - and all this works even without a memory management
unit (MMU).

Another nice feature is the fact that you can open them under
program control, i.e. you can take some action if they do not exist -
warn the user, disable some features, etc. This nice feature becomes a
misfeature if you only need a certain list of functions that are there
all the time - exec, dos, intuition - you still have to open the shared
libraries.

So most Amiga compilers have a feature called automatic library
opening feature. This means that all libraries you reference (by
calling one of the functions) but don’t open yourself get opened for
you by the compiler.

Auto-library-opening usage
How to use it.

Auto-library-opening interface
How it works.

1.24 libnix.guide/Auto-library-opening usage

libnix 15 / 29

Usage

To use this feature you have to do nothing (therefore it’s called
automatic). But you can control the library version if you wish by
declaring

‘long __oslibversion;’

somewhere in your program. But don’t set this lower than 37 - most
functions of libnix (including the commandline parsers) need 37 or more.

1.25 libnix.guide/Auto-library-opening interface

Interface

Implementing such a feature is no hard work if you know how - this
implementation uses a (not so good known) feature of the gnu linker
called set elements:

1. You write a library entry for every library base and link this
library as the last one. This means that the linker uses this
library for every library base pointer that is not defined but
referenced somewhere.

2. You tell the linker to collect these library bases together into a
set element.

3. You write a function that opens all libraries in the set element at
program start and cleans them up later.

Some details:

There are two object files in the library for every library base
pointer. The first one is a

struct lib
{ struct Library *base;

char *name; };

containing the library base pointer (a ‘NULL’ pointer at program
start) and a pointer to the name of the library. This name

‘extern char name[]’

is the second object. All these structs are collected together into
one single set element called

‘extern struct lib *__LIB_LIST__[]’

To open and close the shared libraries there are two functions in
libstubs:

libnix 16 / 29

‘void __initlibraries(void)’

and

‘void __exitlibraries(void)’

Since it is still possible to open the shared libraries by hand I had
to take care about the library base pointers for libnix itself - they
are used in the commandline parsers - even before anybody could open
them. There exists a (library private) duplicate library base pointer
for each of these. They have normal names with two underscores in front.

So don’t be alarmed if some system monitor tells you that your
program opened dos.library twice - this is normal behaviour, most
libraries do this.

Opening libraries by hand works exactly the same way as on any other
compiler:

* You declare the library base variable somewhere globally:

‘struct DosLibrary *DOSBase=NULL;’

The initialization ‘=NULL’ is necessary! Uninitialized variables
get overwritten by initialized ones in other object files - and
the library base pointers in ‘libstubs.a’ are initialized with
‘NULL’. This is a feature of the GNU ld and I cannot do much
about it :(.

* You open the library before using it:

‘DOSBase=(struct DosLibrary *)OpenLibrary("dos.library",37);’

and do some action if it fails :).

1.26 libnix.guide/detach.o

Detaching from the current CLI

Some people like multitasking that much that they tend to start
everything in the background. Some tools are able to do this
automatically - and with libnix you can write such tools, too. (1)

To be able to detach from the current CLI the detach module has to
know how much stack your program needs, how to call the new process,
etc. Therefore you will have to provide some global variables that
contain this information. If you don’t provide them you will get
default values (don’t blame me for them - it’s your own fault :-}).

Here is an example set of variables:

char *__procname="My nifty tool";
long __priority=-1; /* We don’t eat that much processor time */

libnix 17 / 29

unsigned long stack=50000; /* but need a large stack */

---------- Footnotes ----------

(1) Please be aware that you lose the ability to synchronize your
tool with the calling CLI - this can be very nasty if one needs to. Use
this feature very sparse: Most of the time it’s better to just rely on
the user being able to type ‘Run >NIL: <NIL:’.

1.27 libnix.guide/stackhandling

special stack handling facilities

The current Amiga OS (V3.1) has a very limited stack handling
compared to most other OSs: Every process has it’s own fixed sized
stack - and that’s all about it. The usual default for this stack is
4k, but that’s not enough for more complicated purposes (like for
example compilers). Setting a higher default is no real solution
because it costs a lot of (widely unused) memory and may be overrun,
too :-(.

But fortunately you can get stack extension with a little help of
the compiler ;-). Starting with V0.9 of libnix and V2.7.0 of gcc you
get a fully featured stack extension facility. The old stack swap
method is still provided (not only for compatibility but also because
it’s simpler) but please don’t try to mix it with the newer
check/extend methods.

swapstack
Old method.

stackextend implementation
How stack extend works.

stackextend usage
Usage. *read*

Advanced
Fine tuning.

Costs
Some damned lies (Benchmarks ;-)).

1.28 libnix.guide/swapstack

libnix 18 / 29

Minimum stack setting

Most large tools need more stack than the default 4096 bytes. If
your tool is one of them you can either rely on the user being able to
raise the current stack or you can let libnix raise the stack for you.
At startup this module checks if the current stack is large enough for
your needs and switches to a new one if not. All you have to do is to
provide a variable

‘unsigned long __stack={required stacksize};’

somewhere in your code and to link with the appropriate swapstack.o
module.

1.29 libnix.guide/stackextend implementation

Implementation of stack checking and extension

**

The basic principle of stack checking is that the compiler emits
special code to check if the stack is large enough whenever there’s
need for a bigger chunk of stackspace, i.e. at function entry when
local arrays are allocated, at the start of blocks with local variable
sized arrays and when calling ‘alloca()’. If the needed stackchunk is
bigger than the left stackspace the program ends.

Since this special code costs memory and CPU time smaller stackneeds
(e.g. when calling library functions) are handled by not really
checking against the hard border of the stackframe but against one that
leaves a certain amount of stackspace left (See

Advanced
.). If you like

to call functions with a lot of arguments (more than 256 bytes) you
should raise this value.

Stack extension builds on the same basic principle but allocates a
new stackframe whenever necessary. If this happens at the entry of a
function with arguments they have to be copied to the new stackframe so
that the function may use them. Since C allows for a variable number
of arguments the compiler doesn’t always know how many arguments there
are. Therefore only a fixed number of bytes is copied. If your
functions may have lots of arguments (again more than 256 bytes) you
should raise this number.

Since allocation and freeing of memory through OS functions costs a
lot of time (while a stack tends to be very dynamic) libnix caches once
used stackframes and utilizes them again if necessary. The memory
needed for this doesn’t accumulate or such but just sticks to a maximum
value raised once. This may look like a memory leak (while in fact it
isn’t). Be prepared for it.

libnix 19 / 29

1.30 libnix.guide/stackextend usage

Using stack checking or extension

To utilize the stack checking or extension feature you need at least
V2.7.0 of gcc. With this compiler you get 2 new amiga specific options
that emit special code whenever necessary:

* ‘-mstackcheck’ Emits code that checks if there is enough stack
left. The program exits if not.

* ‘-mstackextend’ Tries to extend the stack before exiting (this may
happen due to low or fragmented memory).

You can mix functions compiled with or without these switches
without problems.

Caution:

Do not use stack checking and/or extension switches when compiling
hook or interrupt code. Both run in alien contexts with a different
stack and all stack magic must fail. Also don’t try to do some other
stack magic on your own if you want to use stack extension.

Also note that a program compiled with stack extension/checking may
‘exit()’ at *any* function entry or when using alloca or variable sized
arrays. Either prepare your cleanup function accordingly (use
‘atexit()’) or don’t use this feature.

If you like to write or call functions with more than 256 bytes of
arguments (64 ints, longs or pointers) you should adjust the behaviour
of the stack extension code (See

Advanced
.).

1.31 libnix.guide/Advanced

Stack extension fine tuning

To adjust the behaviour of the stack extension code to your personal
needs you may set some of the following variables (or functions)

‘unsigned long __stk_minframe’ (default: 32768)

Minimum amount of memory to allocate for a new stackframe. Setting a
higher value speeds the code up but costs more memory if it is unused.

‘unsigned long __stk_safezone’ (default: 2048)

Size of the safety zone. Set this to a higher value if you want to

libnix 20 / 29

call functions with lots of arguments.

‘unsigned long __stk_argbytes’ (default: 256)

Number of bytes copied as arguments. Set this to a higher value if

your functions may have lots of arguments.

‘void _CXOVF(void)’

Is a user replaceable stack overflow handler. The default one just
pops up a requester, then exits. This function is not allowed to return.

1.32 libnix.guide/Costs

Overhead of stack extension

The additional code needed for stack extension (or checking) costs
memory and CPU power. Here are some numbers to give you a very rough
idea for it. (Times are in 1/60s, sizes in bytes):

Test normal checking extending extending
(big stack) (big stack) (big stack) (small stack)

Simple recursive
function runtime 152 221 225 226
(function calling
overhead)

Variable sized 52 136 398 468
array runtime

alloca runtime 31 118 118 118

Own code size 1040 1160 1140

Library code size 0 184 788

1.33 libnix.guide/Special startups

Special startups

As a serious Amiga programmer you may sooner or later want to write
your own shared library or device. This can be a very difficult task if
you never did it before. To make your life easier we did some of the
work for you if you decide to use one of our startups. Be aware that
writing a shared library is a task for the experienced programmer (1).

libnix 21 / 29

Calling convention
How to interface to the system.

libinit.o
Shared library startup.

libinitr.o
Shared library with a new data segment for each caller.

devinit.o
Device startup.

---------- Footnotes ----------

(1) Most ANSI library functions don’t work out of a shared
library. libnix makes no difference here - even simple operations like
multiplying two integers can fail - don’t take anything for granted.

1.34 libnix.guide/Calling convention

Calling convention

On the amiga almost all shared libraries are called with the library
base in a6 and other parameters in other registers. The result is
placed in d0 usually.

If you want to write your own shared library you should stick to
this model to make it easier for others to interface with it - but
unfortunately gcc doesn’t support registerized parameters. The solution
to this problem is to write an assembler wrapper for each function you
need. Since all those wrappers look the same it’s easy to simplify
their notation by using preprocessor macros. You can find appropriate
macros in the stabs.h file of the libnix sources. Usage:

/* Define some function that has 1 argument in d0 */
ADDTABL_1(__UserFunc,d0);

As a bonus these macros add your function to your library’s jump
vector. All you have to do is to care for the right linkage order. And
don’t forget to add a ‘ADDTABL_END();’ at the end of the vector.

Attention: Other programmers may decide to patch into your library’s
jump vector - therefore it’s a good idea to call even own functions
over this vector. To achieve this you have to provide some inline
functions (like those in the gnu:os-include/inline directory) or glue
code and you have to privatize the function’s name by adding some ’__’s
or similar. You will also have to set up your OWN library base.

libnix 22 / 29

1.35 libnix.guide/libinit.o

Shared library startup

This startup gives you one data segment for all possible callers.
You will have to use semaphores to share special data between them.

To write a shared library you will have to provide some global
variables

const BYTE LibName[]="simple.library";
const BYTE LibIdString[]="version 1.0";
const UWORD LibVersion=1;
const UWORD LibRevision=0;

as well as some special functions (1)

int __UserLibInit(struct Library *myLib);
void __UserLibCleanUp();

Please look into the examples directory for more details.

---------- Footnotes ----------

(1) It’ll be possible to add an Open() and Close() function, too.
But this would be incompatible to libinitr.o and wouldn’t give any
advantages over this method.

1.36 libnix.guide/libinitr.o

Shared library with different data segments

If you don’t like the hassle with semaphores you can use this
startup. It provides a new data segment for each task that opens your
library. There are two disadvantages over libinit.o:

* This method needs more memory.

* You cannot interact between your tasks.

The usage stays the same.

1.37 libnix.guide/devinit.o

Device startup

The device startup uses different names over the library startup

libnix 23 / 29

(though a device is always a shared library on the Amiga).

const BYTE DevName[]="simple.device";
const BYTE DevIdString[]="version 1.0";
const UWORD DevVersion=1;
const UWORD DevRevision=0;
int __UserDevInit(struct Device *myDev);
void __UserDevCleanUp();
int __UserDevOpen(struct IORequest *iorq,ULONG unit,ULONG flags);
void __UserDevClose(struct IORequest *iorq);
(And some begin and abort function as well)

1.38 libnix.guide/Set elements

Set elements - a nice feature of the gnu ld

Set elements are used very often by this library. Since most people
don’t know them they are explained here a second time.

You can tell the linker to build up an array of pointers to every
global symbol in your program (functions or variables) even if your
symbols are scattered among some object files. These arrays are called
set elements.

You can take 4 Library base pointers

‘DOSBase’, ‘IntuitionBase’, ‘GfxBase’, ‘IconBase’

tell the linker to put them together into a set element called
‘librarybases’ by placing some assembler lines like

‘asm(".stabs \"_librarybases\",24,0,0,_DOSBase")’

into your code (22 for text, 24 for data, 26 for bss - and don’t
forget the single underscore) and get an array of pointers like this:

void *librarybases[]=
{ (void *)4,&DOSBase,&IntuitionBase,&GfxBase,&Iconbase,NULL };

The first element contains the number of symbols. The last element
contains a NULL pointer. And remember: This are pointers to the pointer
variables.

This is the basis of global constructors and destructors in C++ and
is very useful on the amiga to implement an auto-library-opening
feature :-). Set elements are used in this library for collecting
together library bases, initialization routines and cleanup routines.

1.39 libnix.guide/geta4

libnix 24 / 29

geta4 and other things - some words on code and data models

A program consists of two portions - code and data (with the
exception of self modifying code - you cannot get this out of GCC and
it is a bad thing to do - so forget about it).

A program usually accesses them in a unique style of addressing
modes for the machine instructions - called a code (or data) model.

On the amiga OS there exist two addressing styles for both of them -
code and data. With full 32 bit addresses - giving you access to 4 GB
of address space. And with reduced 16 bit addresses - giving you access
to only 32k of code and 64k of data. These styles are called large (or
normal) and small code and data models. Usually small code comes
together with small data - but that’s not necessary.

(Don’t mix code and data models with the memory models of MS-DOS
machines: The memory in small data model is still flat 4 GB which means
by using pointers you can still address the whole memory. Only the
number of variables is limited.)

You may think that these limitations are a large disadvantage -
where are the benefits?

The benefits are simple: Code size and performance.

Every time you access a 16 bit address instead of 32 bit you spare 2
bytes in code size meaning 2 bytes in program size. And the processor
needs to load and process a smaller instruction that needs less
processor cycles. And since these 16 bit addresses are relative the
loader of the OS need not relocate them. Meaning that you spare even 8
bytes more in executable size and some loading time.

And there is another advantage: If all the data is addressed
relative it is simple to relocate it at program start - which means
that you can easily get multientrant and reentrant executables (the
code section is constant and need not be relocated). You know these as
pure=resident programs.

Some details:

Data models

Code models

1.40 libnix.guide/Data models

Data models - large and small

libnix 25 / 29

Let’s take a simple C program:

#include <stdio.h>

int max=100;
int count;
char string[]="Hello, world\n";

int main(void)
{ int i;

for(i=0;i<max;i++)
{ count++;

printf("%s",string); }
return 0;

}

If we look at it carefully we see 4 different types of data in it:

1. The variable ‘max’ and the array ‘string’ - both are nonconstant
initialized global data.

2. The variable ‘count’ - this is uninitialized (and therefore
nonconstant) global data.

3. The string "%s" - this one is constant data.

4. The variable ‘i’ - this one is local data.

The compiler places these 4 types of data into 4 different places:

Data number 4 is local (and exists only in one function call). The
compiler places such data into registers if possible. On the stack if
this is not possible. If you do not want the compiler to place data
into registers declare it volatile - it will be on the stack then all
the time.

Data number 3 is constant - the compiler places it together with all
the other constant data into the code section (code is also constant).
Never change any constant data - the weirdest things can happen.

Data number 2 is not initialized - it would be a bad thing to put
data without information into an executable. Therefore such data goes
into a special section - the BSS section. BSS data does not increase
executable size.

And the rest (number 1) goes into the data section :-).

To access the data section with machine instructions there are two
possible methods:

You can take the whole 32 bit address and store it into your machine
code. 32 bit means 4 byte every time you access a global variable.
This is know as the large (normal) data model because you can access
the whole bunch of 4 GB address space.

A lot of applications do not need such a large data section and it
would be a waste of memory to do so. So there exists a second

libnix 26 / 29

possibility:

You take one address register (a4) and use it as a pointer to your
data section. You access your data relative to this pointer with 16 bit
references. This is known as small data model.

Since there are only 16 bit references you can access a total of 64k
of data (32k in each direction from a4 on). And since you use only one
address register for this the data and BSS section get merged together
(BSS data still need not increase executable size - there exist some
tricks to prevent this - but not all linkers support such tricks).

Beware: you should never lose the contents of your address register
(a4) or all the hell breaks lose.

If you ever lost them (this can only happen in certain cases when
using interrupts or hooks) you can restore them by calling ‘geta4()’ or
you can use no global data at all (and have no problems then).

The second method is recommended - and it is possible sometimes
since the OS takes care of this and supports local data areas in these
nasty cases. But don’t call any shared library - or you will access
(hidden) a library base pointer.

It is not possible to have a ‘geta4()’ function with resident
programs = multiple data sections (which one would you choose? You
access the data from a different task!)

It’s in general not possible to mix objects compiled for the two
data models. There are some exceptions, but people that know enough to
prevent collosions need no explanation of when it’s possible ;-).

1.41 libnix.guide/Code models

Code models

All your constant data and all (constant) code form the code section.
To access the code section there exist two code models:

You can take the whole 32 bit address to call a function and can
write programs 4GB large. This is the large (normal) code model.

But you can even call your functions relative to the program counter
(pc) with 16 bit offsets. This is the small code model. The advantages
are the same as in the small data model - only the disadvantages are
different:

* You can only have a total of 32k of code since you need to jump in
both directions. But even this is enough for a lot of programs.

* There is no address register that can be lost - the program counter
is valid the whole time.

libnix 27 / 29

* It is possible to mix large and small code model - but you can
hardly get more than 32k of code out of it.

1.42 libnix.guide/Library bases

Library base pointers - and how they work

The model of shared libraries on the amiga works as follows:

The library is not managed by the linker but by the application.
You open it through a system function. The advantage of this is clear:
You open libraries under program control, i.e. you can even check if
they are there and disable some features if not or take other action.

The result of this system function is a pointer to the upper end of a
jump table (a table of ‘jmp’ instructions to the different functions)
and the lower end of a library structure containing extra information
for every library you opened. These pointers are called library base
pointers. They are usually stored in normal global variables.

To call a system function you have to put the library base into
address register a6 and the parameters into certain other registers.
Then your program has to jump over the certain address of the jump
table. The function returns with the result in register d0 (and
sometimes some more).

A compiler can handle this behaviour by two different methods:

* It can just do the right thing and place everything into the
desired registers - gcc does this by declaring special assembler
inline functions that do the job.

* It can put the arguments on the stack (as in every normal function
call) and call a glue function that does nothing else then taking
the arguments from the stack and putting them into the right
registers then calling the function. This glue code is contained
in ‘amiga.lib’.

Both methods require to access the library base pointer (and a valid
value in it) so they make up a reference to this variable.

1.43 libnix.guide/libamiga.a

Glue code and some other things

It’s not possible for me to redistribute amiga.lib - but you should
have one if you really want to use the possibilities of your amiga.
(You don’t need one if you only want to use ANSI features or if you use

libnix 28 / 29

the inline headers of gcc) If you want to compile resident programs you
will need a baserelative version too.

To solve this problem I decided to build a selfmade version of
libamiga.a. The gluecode of this library is built out of the inline
header files of gcc, some of the other functions are written from
scratch. This does not give you a complete version of libamiga.a but a
better that nothing version including sources. To rebuild it unpack
the sources, then type a ’make libamiga’.

If you want to have a fully functional version of libamiga.a you can
use the real one. To do this you will have to convert normal amiga
objectfile format to a.out format (known by the linker). Type:

cd <some empty directory>
stack 300000
sh
Hunk2GCC <path>amiga.lib
ar -q libamiga.a obj*
rm *.o
ranlib libamiga.a
exit

Doing this on ‘RAM:’ will improve performance a lot.

This doesn’t give you the baserelative version blib/libamiga.a - you
will be unable to compile resident programs. To get a baserelative
version of amiga.lib try to get the ‘libtos’ program of the ‘DICE’
compiler of M. Dillon (from fishdisk or somewhere else) - it converts
libraries to baserelative ones:

cd <some empty directory>
lha x amigalibdisk491:dice/dice206_21.lzh #?/libtos
netdcc/bin/libtos <path>amiga.lib amigas.lib

Then do the same as above.

1.44 libnix.guide/FAQs

FAQs

Q:
I do not get a working executable out of it - my debugger tells me
the library bases are broken.

A:
The GNU ld that comes with GCC 2.5.8 (or lower) has some serious
bugs in conjunction with set elements. Use the fixed version of
ld that comes with gcc 2.6.0 (or above).

Q:
There are some prototypes missing in stdio.h.

libnix 29 / 29

A:
This stdio.h is only for internal use - use the normal GCC stdio.h
to compile your programs.

Q:
While printing floats printf prints weird characters.

A:
This problem should be fixed with the current release of libnix.
It was caused by a bug in the system math libraries which happens
if you open them in the wrong order. You can use the SetMathPatch
program by Andreas Wolff to fix this and another more serious bug
with mc68040 processors.

	libnix
	libnix.guide
	libnix.guide/Description
	libnix.guide/Authors
	libnix.guide/Disclaimer
	libnix.guide/Naming
	libnix.guide/Usage
	libnix.guide/Features
	libnix.guide/Startup codes
	libnix.guide/Startup interface
	libnix.guide/Startup usage
	libnix.guide/Commandline parser
	libnix.guide/libnix.a
	libnix.guide/Locale
	libnix.guide/Formatted I-O
	libnix.guide/atof strtod
	libnix.guide/Memory management
	libnix.guide/Standard I-O
	libnix.guide/Signal handling
	libnix.guide/setjmp longjmp
	libnix.guide/ctype
	libnix.guide/clock
	libnix.guide/Multibyte character functions
	libnix.guide/libstubs.a
	libnix.guide/Auto-library-opening usage
	libnix.guide/Auto-library-opening interface
	libnix.guide/detach.o
	libnix.guide/stackhandling
	libnix.guide/swapstack
	libnix.guide/stackextend implementation
	libnix.guide/stackextend usage
	libnix.guide/Advanced
	libnix.guide/Costs
	libnix.guide/Special startups
	libnix.guide/Calling convention
	libnix.guide/libinit.o
	libnix.guide/libinitr.o
	libnix.guide/devinit.o
	libnix.guide/Set elements
	libnix.guide/geta4
	libnix.guide/Data models
	libnix.guide/Code models
	libnix.guide/Library bases
	libnix.guide/libamiga.a
	libnix.guide/FAQs

